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Abstract 
 

The ability to describe sea clutter returns via non-linear, and more specifically chaotic 
dynamics, is examined.  It is shown that the commonly used chaotic invariant measures of 
correlation dimension and Lyapunov exponent are incapable of uniquely identifying chaotic 
processes and produce similar results for measured sea clutter returns and simulated stochastic 
processes.  The potential existence of an underlying chaotic texture masked by stochastic 
overlying speckle is examined but found to be inconsistent with the measured properties of 
the measured sea clutter data.  Finally, the performance of linear and non-linear predictors is 
tested against the real data but no improvement is found to exist for the non-linear predictor 
examined in this report with respect to linear prediction performance. 

Résumé 
 

Le présent rapport examine la possibilité de décrire le fouillis de mer en utilisant la 
dynamique des systèmes non linéaires et, plus précisément, chaotiques. On montre que les 
mesures invariantes chaotiques communément appliquées à la dimension de corrélation et à 
l’exposant de Lyapunov ne permettent pas d’identifier de façon unique les processus 
chaotiques et produisent des résultats semblables pour le fouillis de mer mesuré et les 
processus stochastiques simulés. L’existence possible d’une texture chaotique sous-jacente 
masquée par le speckle stochastique sus-jacent est également étudiée, mais elle s’avère 
également incompatible avec les propriétés des données de fouillis de mer mesurées. Enfin, 
l’efficacité prédictive des détecteurs linéaires et non linéaires est mise à l’essai en fonction des 
données réelles, mais aucune amélioration n’est constatée pour le prédicteur non linéaire 
examiné ici par rapport à l’efficacité de la prédiction linéaire.  
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Executive summary 
 

This report examines the ability to describe sea clutter returns via non-linear, and more 
specifically chaotic, dynamics.   The study of radar detection of small targets in clutter has 
traditionally relied on the application of stochastic theory to the development of target 
detection schemes.  In contrast to stochastic methods, it has recently been suggested that sea 
clutter returns can be modelled using chaos theory.  Chaotic systems are non-linear dynamic 
systems with a relatively small number of degrees of freedoms.   

The ultimate goal of applying chaotic theory to the sea clutter problem is to exploit its 
deterministic nature so as to develop accurate predictors for sea clutter returns.  This ability to 
accurately predict sea clutter returns via a non-linear chaotic model should, in theory, result in 
substantial improvements in detection performance over that of stochastic models.  This 
would improve the small target detection capabilities of radars such as the APS-506 on the 
CP-140 maritime patrol aircraft. 

Past studies have shown that initial identifications of chaotic processes in low resolution sea 
clutter returns were, at best, highly ambiguous and indeed the returns seemed to be 
indistinguishable from stochastic processes. It was speculated that this shortcoming might be 
a result of the low resolution of early measured returns and that high resolution measurements 
would more accurately capture the underlying chaotic swell structure.  In this report high 
resolution data (less than one metre) collected using the DRDC Ottawa XDM radar are 
analysed.  It is shown that the commonly used chaotic invariant measures of correlation 
dimension and Lyapunov exponent are incapable of uniquely identifying chaotic processes 
and produce similar results for measured sea clutter returns and simulated stochastic 
processes.  Additional tests examining the behaviour of the correlation function versus cut-off 
length for increasing embedding dimension indicates that sea clutter are consistent with a 
stochastic rather than chaotic process.  The potential existence of an underlying chaotic 
texture masked by stochastic overlying speckle is also examined but again found to be 
inconsistent with the measured properties of measured sea clutter data.  It is concluded that no 
evidence currently exists to support the existence of an underlying chaotic attractor in low 
resolution or high resolution sea clutter returns. 

Finally, the prediction performance of linear and non-linear detectors is tested against the real 
data but no improvement is found to exist for the non-linear predictor examined in this report 
with respect to linear prediction performance. 

 

McDonald, Michael K. 2002. Limitations of Non-linear Dynamics in Predicting Sea 
Clutter Returns. DRDC Ottawa TR 2002-130. Defence R&D Canada - Ottawa. 
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Sommaire 
 
Le présent rapport examine la possibilité de décrire le fouillis de mer en utilisant la 
dynamique des systèmes non linéaires et, plus précisément, chaotiques. L’étude de la 
détection radar de petites cibles en présence de fouillis a par le passé reposé sur l’application 
de la théorie stochastique pour l’élaboration de plans de détection de cible. Suivant une 
approche opposée aux méthodes stochastiques, on a récemment suggéré que le fouillis de mer 
pourrait être modélisé à l’aide de la théorie du chaos. Les systèmes chaotiques sont des 
systèmes dynamiques non linéaires possédant un nombre relativement faible de degrés de 
liberté. 

L’application de la théorie du chaos au problème du fouillis de mer vise en définitive à 
exploiter sa nature déterministe afin de définir des prédicteurs précis applicables au fouillis de 
mer. La capacité de prévoir exactement le fouillis de mer au moyen d’un modèle de chaos non 
linéaire devrait en principe permettre des améliorations sensibles de l’efficacité de la détection 
par rapport aux modèles stochastiques. On pourrait ainsi améliorer les capacités de détection 
de petites cibles au moyen de radars comme l’APS-506 utilisé à bord de l’aéronef de 
patrouille maritime CP-140. 

Dans le présent rapport, des données à haute résolution (moins de un mètre) recueillies à 
l’aide du radar XDM du RDDC Ottawa ont été analysées. On montre que les mesures 
invariantes chaotiques communément appliquées à la dimension de corrélation et à l’exposant 
de Lyapunov ne permettent pas d’identifier de façon unique les processus chaotiques et 
produisent des résultats semblables pour le fouillis de mer mesuré et les processus 
stochastiques simulés. D’autres essais portant sur le comportement de la fonction de 
corrélation par rapport à la longueur de coupure pour l’augmentation de la dimension de 
prolongement indiquent que le fouillis de mer est compatible avec un processus stochastique 
plutôt qu’avec un processus chaotique. L’existence possible d’une texture chaotique sous-
jacente masquée par le speckle stochastique sus-jacent est également étudiée, mais elle 
s’avère également incompatible avec les propriétés des données de fouillis de mer mesurées.  

Enfin, l’efficacité prédictive des détecteurs linéaires et non linéaires est mise à l’essai en 
fonction des données réelles, mais aucune amélioration n’est constatée pour le prédicteur non 
linéaire examiné ici par rapport à l’efficacité de la prédiction linéaire. 

  

McDonald, M.K. 2002.  Limitations of Non-linear Dynamics in Predicting Sea Clutter 
Returns.  DRDC Ottawa TR 2002-130.  R&D pour la défense Canada - Ottawa. 
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1. Introduction 
 
In 1990 Leung and Haykin [1] published a letter in which they first speculated that the 
dynamic behaviour of radar returns from sea clutter might be readily modeled through the use 
of chaotic dynamics.  Following this initial letter, a series of subsequent papers [2,3,4,5] 
reported on measurements performed on collected sea clutter returns to identify characteristic 
invariants associated with chaotic processes.  While many of these studies did produce results 
consistent with a chaotic process, namely a fractal dimension and at least one positive 
Lyapunov exponent, it remained unclear if the results were merely indicative of a coloured 
noise process rather than a chaotic process. 
 
Unsworth et al. [6,7] re-examined the issue.  They analysed real sea clutter returns and 
correlated random processes produced by simulation.  By calculating the associated 
correlation dimension (Dc) using the maximum likelihood dimension (DML) estimate of  
Schouten et al. [8] and the embedding dimension (De) using the false nearest neighbours 
(false_nearest) method [9] they demonstrated that these methods produced estimates of 
correlation dimension and embedding dimension for both measured and simulated data sets 
that seemed consistent with chaotic processes; this despite the fact that the simulated sets were 
known to be random processes.  This analysis was extended by calculating the correlation 
integral C(r) of Grassberger and Procaccia [10] whereby they observed that random processes 
could be distinguished from chaotic processes by the non-converging behaviour of the slopes 
of their C(r) versus cutoff length curves for increasing dimension.  Their results were a strong 
indication that the DML and false_nearest algorithms used to calculate the chaotic invariants 
were not a reliable method of uniquely identifying chaotic processes and cast serious doubt on 
the existence of a chaotic attractor in the sea clutter returns.  
 
All of the aforementioned studies focussed on the identification of chaos as the primary 
mechanism to explain the behaviour of sea clutter returns.  While it has always been 
recognized that measured time series would contain measurement noise, more recently it has 
been recognized that dynamical noise may also play a major role [11].  Indeed, it has been 
postulated that sea clutter returns might be comprised of a random and chaotic component.  
Under this assumption the chaotic component would correspond primarily to the texture 
component while the speckle, or random, component would represent dynamic noise in the 
sea clutter returns.  If the texture component is primarily chaotic in nature it may be possible 
to more accurately predict the fluctuations in texture using a non-linear predictor and thereby 
improve the detection performance to that more closely resembling ideal CFAR [12]. 
   
This paper examines the concept of an underlying chaotic texture by utilizing high resolution 
(i.e. sub-metre) sea clutter returns collected using the DRDC Ottawa Spotlight SAR 
eXploratory Development Model (XDM) airborne radar platform.  Two aspects are examined.   
 

1) The returns are analysed to determine the effectiveness of the chaotic 
characterizations and to examine the dependence of the invariant measures on the 
properties of the sea clutter returns.  These results are compared with a simulated K-
distributed time series possessing the same shape parameters and correlation 
characteristics as the real data. 
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2) The predictability of sea clutter returns is examined.  The accuracy of predictions 

achieved using linear and non-linear predictors is quantified and compared.   
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2. Data Sets     
 
The data analysed in this study was collected using the DRDC-Ottawa Spotlight SAR XDM 
radar system.  This high resolution airborne radar system is capable of obtaining sub-metre 
measurements in spotlight, fixed squint and scanning modes.  Table 1 summarizes the 
relevant operating parameters of the system. 
 

Table 1.  Operating parameters of XDM radar. 

PARAMETER DESCRIPTION  PARAMETER VALUE 

Frequency 9.5-10 GHz 

Peak Power 500 kW 

Azimuth Beamwidth 2.4o 

Elevation Beamwidth 4o 

Polarization Horizontal-Horizontal 

Sidelobes -20 dB 

 
Each data set is composed of 32768 records in which each record contains 1024 digitized 
samples of the range return echoes from each transmitted pulse.  Due to abrupt changes of the 
front end gain setting in some of the data sets, it has been necessary to truncate these sets to 
remove sections in which the setting was adjusted.  Table 2 summarizes the collection 
configuration of the data sets examined in this study.      
 
Three different ‘scanning’ modes are employed in this study.  During spotlight mode the 
antenna pointing angle and radar echo digitization are carefully controlled to ensure that the 
same geographic location remains centred in azimuth in range cell 512.  In squint mode the 
radar squinting angle and radar echo digitization are held constant so that the sampled range 
cells migrate from pulse to pulse across the sea surface as the airborne platform moves.  In 
sector mode the antenna is sectored across an azimuth width of 20o at a rate of approximately 
6 rpm and the radar echo digitization is held constant.  In sector mode the returns from a 
particular range cell correspond to a varying geographic location determined by the plane’s 
motion and antenna azimuth within the sector. 
 
In all cases the airborne platform is moving at a speed of approximately 75 m/s.  The PRF 
associated with each data set is given in table 2 along with the approximate relationship of the 
viewing direction with respect to the sea swell.   
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Table 2.  Description of data sets. 

FILE 
NAME 

PRF 
(HZ) 

ANTENNA 
DEPRESSION 

ANGLE (O) 

VIEWING 
ANGLE 

RESOLUTION MODE 

472s17 692 4.54 Down-swell <1m Squint 85 degrees 

472s19 715 8.97 Cross-swell <1m Squint 85 degrees

472s25 689 8.93 Up-swell <1m Squint 85 degrees

472s30 643 4.56 Cross-swell <1m Spotlighted

472s31 656 2.40 Cross-swell <1m Spotlighted

472s37 697 5.59 Down-swell <1m Spotlighted

472s38 674 2.39 Down-swell <1m Spotlighted

472s43 691 2.39 Cross-swell <1m Spotlighted

418s39 590 5.59 N/A 5m Sectoring
 
Two types of times series are extracted: 
 

1) Values are extracted from range bin 512.  For the case of spotlight data this 
results in a time series of sea clutter returns from the same sea surface location 
separated by a sampling interval determined by the PRF of the data set.  For the 
squint and sector modes the time series returns migrate across the sea surface 
according to the aircraft velocity and antenna azimuth within the sector.   These 
time series are identified with ending ‘r512’. 

 
2) A series of full range line returns (i.e. 1024 samples) are extracted from the 

spotlight mode data set and appended together to form a time series.  These time 
series are identified with the ending ‘rl’.  

 
The extracted time series are summarized in table 3.  The shape parameter of each data set, as 
per the K distribution, was measured using the z log z method [13] and is also presented in 
table 3. 
 
 

2.1 Generation of Simulated Data 
 
As a cross check of the analysis of the chaotic invariants, a surrogate simulated time series is 
generated for each extracted real clutter time series.  Each surrogate is composed of a 
correlated K distributed time series where the correlated gamma texture is generated per the 
approach of Tough and Ward [14]. 
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The surrogate sets have the same approximate value of shape parameter and correlation as the 
corresponding measured data set.   It is well known that the texture and speckle components 
of real sea clutter decorrelate on significantly different time scales; the underlying swell 
corresponding to the texure decorrelates over a time period on the order of seconds while the 
speckle decorrelates on the order of milliseconds.  In this study, the texture correlation is 
extracted by calculating the squared power spectrum of the amplitude of the measured sea 
clutter return using an FFT and then box filtering the spectrum to remove all frequency 
components with a period of less than 0.1 seconds.  The complex correlation of the speckle is 
obtained by performing a complex FFT and calculating the squared power spectrum.  The 
resulting frequency domain correlation function for the speckle is not filtered as the 
contribution due to the texture component is minimal.  
 
 

Table 3.  Extracted time series 

TIME SERIES MODE RECORD 
LENGTH 

SHAPE 
PARAMETER 

(ν ) 

COMMENTS 

472s17r512 Squint 85 degrees 16000 67.0  

472s19r512 Squint 85 degrees 16000 44.5  

472s25r512 Squint 85 degrees 25950 12.1  

472s30r512 Spotlight 21000 6.2  

472s31r512 Spotlight 20600 8.4  

472s37r512 Spotlight 16000 11.6  

472s38r512 Spotlight 16000 8.3  

472s43r512 Spotlight 16000 6.5  

418s39r512 Sector 32768  
pdf is not K-

distributed 

472s30rl Spotlight 26000 34.4  

472s31rl Spotlight 26000 91.4  
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3. Analysis of Chaotic Invariants  
 
Two key invariant measures are examined for their ability to identify chaotic systems: the 
correlation dimension and the Lyapunov dimension (see for example [15]).   
 
If sea clutter returns are to be well represented by a low dimensional dynamic system it is 
necessary that the correlation dimension of the system be finite and small.  The correlation 
dimension is calculated for selected time series using the approach of  Schouten et al. [8] as 
implemented within the RRChaos  program [16] and per the method of  Grassberger and 
Procaccia [10] as implemented within the d2 program of the Tisean package [17].   
 
In addition to a finite fractal correlation dimension at least one of the measured Lyapunov 
dimensions must be positive to allow for the expanding flow associated with a chaotic 
attractor [15]. As a precursor to calculating the maximum Lyapunov component it is 
necessary to determine the appropriate embedding dimension (De), embedding delay and 
Theiler window.  The significance of the first two of these parameters is briefly discussed in 
the following sections on non-linear prediction; the interested reader is referred to Parker et al. 
[15] for a more complete discussion.  These parameters are calculated using routines 
false_nearest, mutual and stp, respectively, of the Tisean chaotic analysis package [17].  The 
calculated parameters for the examined time series are given in table 4. 
 
The maximum Lyapunov exponent for each time series was calculated using the Tisean 
function lyap_k based on the approach of Kantz [18].  This function outputs the logarithm of 
the stretching factor versus time step; when an appropriate range of time steps is reached the 
slope of the output will become linear and equal to the maximum Lyapunov exponent.   
 

3.1 Results of Chaotic Analysis 
 
Table 5 lists the correlation dimension (Dc) calculated for each of the data sets per the DML 
algorithm.  The results for the corresponding simulated K-distributed sets are also shown.  
Both results are summarized in the histogram in Figure 1.  The most noticeable result is that 
both the measured and simulated sets present very similar ranges of calculated Dc.   In all 
cases the maximum possible normalized embedding dimension was used to minimize the 
effect of noise on the calculation [8].  Comparisons of values with lower normalized 
embedding dimensions show that good convergence has been obtained.      
 
 
It can be observed from figure 2 that a weak positive correlation exists between the shape 
parameter and Dc for both the measured and simulated data sets. 
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Table 4.  Extracted time series 

TIME SERIES DELAY 
FROM 
MEAS. 
DATA 

DELAY 
FROM 

SIMULATED 
DATA 

De 
FROM 
MEAS. 
DATA 

De FROM 
SIMULATED 

DATA 

THEILER 
WINDOW 

FROM 
MEAS. 
DATA 

THEILER 
WINDOW 

FROM 
SIMULATED 

DATA 

472s17r512 3 3 4 6 18 18 

472s19r512 5 5 5 6 20 10

472s25r512 3 3 6 6 18 24

472s30r512 2 3 6 6 20 40

472s31r512 2 2 6 5 18 30

472s37r512 5 2 6 4 20 34

472s38r512 4 1 4 4 20 34

472s43r512 9 2 6 6 25 30

472s30rl 
7 Not 

examined 

5 Not 

examined 

31 Not 

examined 

472s31rl 
4 Not 

examined 

7 Not 

examined 

18 Not 

examined 
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Figure 1. Histograms of correlation dimensions 
calculated for non filtered, measured and simulated 
data. 
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Figure 2. Correlation dimensions from DML calculation 
versus shape parameter. 

 
Figure 3 demonstrates the results of applying the Grassberger and Procaccia method to real 
time series 472s30r512.  Each curve in figure 3 represents the calculation of log(C(r)) versus 
cut-off length for a different embedding dimension.  If the time series is chaotic a sufficiently 
large embedding dimension will be reached at which point the slopes of the linear section of 
the curves will become constant and equal to the correlation dimension for small values of Dc.  
It is readily apparent that this stabilization of the slope value does not occur for small values 
of Dc.  As argued by Unsworth et al. [6] this final test effectively shows that the real sea 
clutter returns do not, in fact, possess a small finite correlation dimension. Although not 
shown for brevity, the same non-converging behaviour is observed for all the time series 
examined. 
 
The maximum Lyapunov dimension was next analysed.  The logarithm of the stretching 
factor is output by the lyap_k  program and the slope of the linear section gives the Lyapunov 
exponent.  For both real and surrogate data sets the plotted slopes are quite noisy and in some 
cases highly oscillatory.  Kantz [18] states that the oscillatory nature of the response is not a 
problem as long as a clear linear trend is observed.  Nevertheless, the combination of noise 
and oscillations make it difficult to accurately quantify the magnitude of the calculated slopes 
although in all cases it is apparent that a positive slope, and therefore a positive Lyapunov 
exponent, is present.  However, further examination of the results reveals that the same 
behaviour is seen for the simulated stochastic.  It can only be concluded that a determination 
of chaos is ambiguous at best from an examination of the maximum Lyapunov exponent of 
the measured time series.  Table 5 summarizes the approximate Lyapunov exponent for each 
time series considered as determined from the average of 10-15 lines corresponding to a range 
of length scales that give linear results.  
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Table 5.  Extracted time series 

TIME SERIES DC FROM 
MEAS. DATA  

DC FROM 
SIMULATED 

DATA 

MAXIMUM 
LYAPUNOV 
EXPONENT 

FROM MEAS. 
DATA 

MAXIMUM 
LYAPUNOV 
EXPONENT 

FROM 
SIMULATED 

DATA 

472s17r512 5.4 8.0 0.003 0.005 

472s19r512 4.9 6.5 0.012 0.003

472s25r512 5.2 5.8 0.005 0.006

472s30r512 5.2 4.9 0.004 0.007

472s31r512 5.9 5.0 0.008 0.001

472s37r512 7.4 5.4 0.004 0.001

472s38r512 5.3 6.5 0.003 0.001

472s43r512 6.1 5.2 0.003 0.003

472s30rl 
6.5 6.9 Not 

examined 

Not 

examined 

472s31rl 
8.3 7.9 Not 

examined 

Not 

examined 
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Figure 3. Log-log plot of correlation integral (C(r)) versus cutoff length for 
increasing embedding dimension for time series 472s30r512. 

 

3.2 Filtered Data Sets 
 
The above analysis would seem to preclude a chaotic interpretation, however it is unclear to 
what extent this could be the result of a strong dynamical noise component masking the 
underlying chaotic signature.  To examine this effect it is necessary to remove or minimize the 
influence of the noise on the calculations.  
 
As discussed in the introduction, it is speculated that the chaotic component of the signal 
returns may in fact be more strongly associated with the underlying texture, or in physical 
terms the swell component of the ocean surface.  The swell modulates the mean power level 
of the random speckle component.  It is well known that the K-distribution is a good fit to 
many sea clutter returns (see for example [12,19]).  Under this construction the mean power 
level of the speckle is indeed equal to underlying texture, t,  and the variance associated with 

the Rayleigh distributed speckle is given by 
4

2 πσ ttRayleigh −= .  If t is assumed to represent the 

signal and Rayleighσ  the noise, then very poor signal to noise ratios can result.  If the 
assumption of chaotic texture and stochastic speckle is valid it should be possible to 
significantly reduce the contribution of speckle to the overall signal by exploiting the much 
different correlation times of the two components.  The typical correlation times of speckle 
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are on the order of ms seconds while that of texture is on the order of seconds.  In this section, 
a series of low pass filters are applied to the data to progressively dampen the speckle 
response. 
 
Three filters are used: 
 

1) A 3 sample length box filter convolved with the time series. 
2) A 9 sample length box filter convolved with the time series. 
3) A 10 hz bandwidth box filter applied in the frequency domain. 

 
To gain a qualitative understanding of the effect of filtering on a process in which an 
underlying slowly varying chaotic component modulates a stochastic process we first create a 
similar process by modulating a uniformly distributed random process using a chaotic Duffing 
equation. 
 
The Duffing process is specified by  
 

)cos(3
2

tyy
dt
dy

dt
yd ωγδ +−+−= , 

 
where δ is the damping inherent in the system, and ω and γ are the angular frequency and 
amplitude, respectively, of the forcing term.  The chaotic output used in this study is shown in 
figure 4a.  The rand function of Matlab is used to generate a speckle vector that is multiplied 
by the output shown in figure 4a.  The modulated output is shown in figure 4b.  The effect of 
applying a convolving 39 element box filter with the Duffing modulated data is shown in 
figure 4c. 
 
Table 6 summarizes the results of applying the DML calculation to each of the Duffing 
modulated data sets of figure 4.  It is readily seen that the estimates produced by all sets are 
finite and of low dimension.  The calculated values more closely approach that of the pure 
Duffing measurement after the low pass filter is applied but even for the unfiltered set the 
error is not large.  Perhaps even more important are the results of the d2 calculation on each of 
the data sets as shown in figure 5.  It is clearly evident that for the pure Duffing case (i.e. no 
speckle) the slopes of the curves stabilize for increased but small embedding dimension.  This 
result is not observed for the unfiltered set but becomes more apparent as the filtering is 
increased.  This qualitative example suggests that the speckle component can indeed hide the 
underlying chaotic behaviour in the d2 analysis.  However, if the texture of the measured data 
sets is well modeled by a chaotic process it will produce finite, low dimensional estimates of 
correlation dimension via the DML method, and, in addition, the output of the d2 analysis will 
converge to constant slopes as filtering is increased.  It should be noted that there is a limit to 
the improvement that can be obtained by filtering as it is impossible to limit the effects of 
filtering to the speckle component and, at some point, the increased filtering could seriously 
alter the underlying chaotic structure. 
 
Figure 6 presents the histograms of the correlation dimension for each of the sets.  Table 7 
summarizes the results of the DML calculation on the sets.  A general decrease in the mean 
and variance of Dc is observed as the filtering is increased which would seem to support the 
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concept that the speckle was masking the underlying chaotic texture, however the observed 
trend is present for both the measured and the simulated stochastic sets.  This suggests that the 
observed behaviour might instead represent a negative relationship between the correlation of 
the processes and the calculated Dc, i.e. as the correlation of the time series is increased 
through high pass filtering, the measured Dc decreases.   
 
To clarify the situation the output of the d2 calculation is analysed using measured data. 
Figure 7 displays the results of performing the d2 analysis on measured data set hdrs30r512.  
It is clearly evident from the figure that there is no convergence in the slope of the curves as 
the embedding dimension is increased. The results for the other data sets are not shown for the 
sake of brevity but display a similar behaviour.  Thus, after examining the different measured 
invariants (Dc from DML and Lyapunov exponents) of the sea clutter sets it is concluded that, 
at most, they provide an ambiguous identification of a chaotic signal in that they display the 
same behaviour for measured and simulated stochastic sets.  Additionally, the d2 calculation 
is clearly inconsistent with small finite dimension chaotic processes.  Therefore, measured 
data sets would appear to be indistinguishable from similar stochastic processes. 
 
 

Table 6.Correlation Dimension Duffing modulated processes.  

FILE NAME NO SPECKLE DC 

 
NO 

FILTER 

39 POINT BOX 
FILTER 

Duffing  

Process 
2.3 3.1 2.2 
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Figure 4: Chaotic behaviour of Duffing’s equation δ = 0.25, γ=0.3, 
ω=1.0 (a) No speckle  (b) Speckle modulated by Duffing output. 
(c) Speckle modulated by Duffing output and a 39 sample box 
filter applied. Filtered signal in blue, no speckle signal in red.  
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Figure 5: Plot of log(C(r)) versus log(cutoff length) for a) pure 
Duffing output, b) uniform random process modulated by Duffing 
output, c) uniform random process modulated by Duffing output 
with 39 element box filter applied .  
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Figure 6: Histograms of correlation dimensions calculated for 
measured and simulated data with a) 3 element box filter applied, 
b) 9 element box filter applied c) 10 hz box filter in frequency 
domain.  
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Figure 7. Plot of log(C(r)) versus log(cutoff length) for a) 3 
element box filter applied, b) 9 element box filter applied c) 10 hz 
box filter in frequency domain applied.  
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Table 7.  Correlation dimension for filtered time series. 

TIME SERIES DC FROM 
MEAS. 
DATA 

(3 SAMPLE 
FILTER) 

DC FROM 
SIMUL. 
DATA 

(3 SAMPLE 
FILTER) 

DC FROM 
MEAS. 
DATA 

(9 SAMPLE 
FILTER) 

DC FROM 
SIMUL. 
DATA 

(9 SAMPLE 
FILTER) 

DC FROM 
MEAS. 
DATA 
(10 HZ 

FILTER) 

DC FROM 
SIMUL. 
DATA 
(10 HZ 

FILTER) 

472s17r512 7.5 9.3 4.6 8.0 4.3 4.2 

472s19r512 8.9 7.1 8.2 5.9 3.9 4.4

472s25r512 7.0 7.0 5.3 7.0 3.7 4.9

472s30r512 5.1 5.0 4.7 4.5 4.5 4.3

472s31r512 5.4 6.3 4.3 5.4 4.0 4.4

472s37r512 7.2 7.4 7.5 7.3 4.9 4.3

472s38r512 6.1 7.1 5.2 5.8 4.5 4.5

472s43r512 5.3 5.3 5.7 5.3 4.4 3.8

472s30rl 7.2 7.8 8.3 7.8 4.4 4.2 

472s31rl 6.8 8.1 7.6 7.3 4.3 4.2 
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4. Non-linear versus Linear Prediction 
 
The above results argue against the applicability of the chaotic model to sea clutter.  However, 
it can still be speculated that the clutter, or more specifically the underlying texture process, is 
an inherently non-linear one.  While it may not be possible to formulate a generically 
consistent description such as chaos, it has nevertheless been suggested that it is possible to 
construct a non-linear predictor which can more accurately predict the value of a clutter return 
given knowledge of the leading (and possibly trailing) values of the time series in which it is 
embedded [20].  The improved prediction of underlying texture would allow the performance 
of a detector to more closely approach that of an ideal CFAR detector [12]. 
 
In this section, the relative performance of some selected linear and non-linear predictors for 
clutter returns are compared.  A similar undertaking was performed by Cowper et al. [21] but 
their study was limited to data sets derived from two sources: 
 

1) wavetank data measured from a radar in a large wavetank facility, and 
2) low resolution (150 m resolution) data collected from a stationary land-based radar 

pointed out to a fixed patch of sea surface. 
  
It might be argued that neither of these sets truly captures the chaotic nature of the sea clutter; 
the wave tank data may not reproduce the chaotic dynamics that develop in true ocean 
environments while the low resolution measured sea clutter returns may not adequately 
capture the chaotic structure that exists in high resolution data.  It is well known that sea 
clutter returns become spikier as the resolution cell of the radar becomes smaller than the 
length of the swell structure.  The sea clutter data examined by Cowper et al. is of such coarse 
resolution that the underlying swell structure is likely to be heavily filtered.  Little 
improvement would be expected under these conditions by the use of non-linear modelling for 
an underlying non-linear texture. 
 
Three predictor structures are examined in this section: 
 

1) A simple cell averaging (CA) predictor which predicts the clutter return in the target 
cell by averaging the value of the returns from cells on either side.  This type of 
predictor is an example of one specific simple form of linear predictor. 

 
2) A generalized linear predictor structure λAb = , where A are the values used to form 

the prediction b.  The jλ  constants are determined by a least squares fit to the 

observations in the learning set.  A sensitivity analysis was performed to determine 
the ideal training sample (learning set) size; little improvement is noted for training 
sample sizes above 2500.  The results reported hereafter are all for a training sample 
size of 5000. 

 
3) A radial basis function (RBF) non-linear predictor [22].  In this study the basis 

functions are given as 
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where 2

2

)( σφ
r

er
−

= is constructed about cn  number centres ( jc ), with the constant σ  
being determined as a multiple (k) of the average distance (d) between data points (i.e. 
k*d) considered in the fit.  |||| jcx −  is the Euclidean norm.  The jλ  constants are 
determined by a least squares fit to the observations in the learning set, λAb = , 
where b are the observations, λ  is a vector of length cn whose jth component is 

jλ and A is given by 
  

 
The effect of varying cn  and k over ranges of 50 to 300 and 0.0025 to 0.05, 
respectively, was tested.  The results proved relatively insensitive to the value chosen 
and only the results for 150=cn and k=0.01 are presented.  

 

4.1 Results of Prediction Analysis 
 
Figure 8 illustrates the result of applying the CA predictor to each of the data sets.  The Mean 
Square Error (MSE) is plotted for a variety of lengths of predictor cells.  The CA predictor is 
commonly used to achieve a measure of the underlying power level in clutter with a strong 
spatial correlation in texture.  In application it is common to leave one guard cell on either 
side of the target cell to ensure that none of the target returns leak into the background 
estimation.  Results are shown for prediction with and without a guard cell.   
 
It is readily apparent from figure 8 that in most cases the best predictability is achieved by use 
of a 2 cell averager (i.e. one cell on either side) with no guard cell present.  This result reflects 
the fact that the correlation length of the speckle component of the clutter is longer then the 
time (or distance) between individual measurements.  Column 2 of table 8 summarizes the 
results of figure 8 in which the best (i.e. smallest) mean square error achieved for a CA 
predictor without a guard cell has been listed.    Practically, the operation of a CA predictor 
without a guard cell could lead to the serious suppression of distributed targets.  Typically, a 
guard cell configuration would be used with correspondingly reduced performance as shown 
in figure 9.  Column 2 of table 9 summarizes the results of figure 9 in which the mean square 
error achieved for a 12 cell length CA predictor with a guard cell is illustrated.  The prediction 
performance is noticeably reduced. 
 
Column 3 of table 8 also presents the results of using a general linear predictor for an 
embedding dimension of 10 (i.e. the number of measurements used as input) without a guard 
cell.  The effect of varying the embedding dimension for linear prediction without a guard cell 
was investigated and little advantage was gained from increasing the embedding dimension 
beyond 10.     
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Figure 8: Mean square error (MSE) of Cell Averaging (CA) 
predictor with no guard cell versus length of CA for each data set. 

 
The corresponding results obtained using the RBF non-linear predictor are also listed in 
column 5 of table 8.  As discussed earlier, the false_nearest algorithm was used to determine 
the necessary embedding dimension to reconstruct the attractor of the non-linear chaotic 
process.  The effect of using larger embedding dimensions was investigated.  In many cases 
the larger dimension results in improved performance and rarely in degraded performance 
although, as with the linear detector, little improvement was noted for embedding dimensions 
greater than 10.  Hereafter only the results for an embedding dimension of 10 are considered 
unless otherwise noted.   
 
From an examination of columns 3 and 5 of table 8, it is readily evident that the linear and 
non-linear predictors produce virtually identical results.  No performance advantage is evident 
for either method.  It should be noted that sensitivity testing on the RBF predictor indicates 
that best results are obtained with larger training sets.  In all cases prediction was performed 
using the maximum possible training set size while ensuring that testing was performed on the 
same segment of the time series for all methods.   
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Figure 9: Mean square error (MSE) of Cell Averaging (CA) 
predictor with guard cell versus length of CA for each data set. 

 
Perhaps the most noteworthy fact from the data presented so far is that the simple CA 
predictor performance exceeds that of both the linear and non-linear predictor.  This 
seemingly surprising outcome is a result of the method in which the points used as input to the 
predictors are chosen.  For the linear and RBF predictor results described above, the input 
points all lead the time series value we are trying to predict; this contrasts with the CA 
predictor in which we use values from both the leading and trailing sides of the target cell.  If 
the linear and non-linear attractors are correctly capturing the dominant underlying dynamics 
it should not make any significant difference how the values are chosen; clearly this is not the 
case in our test.  To further investigate this affect the linear and RBF predictors were rerun 
with input values chosen to bracket the target cell with and without guard cells (columns 4 
and 7 of table 8, and columns 4 and 5 of table 9, respectively).  Under the new sampling 
procedure the linear and RBF predictors display superior results to the CA predictor with a 
similar number of input samples, however no improvement in performance is noted by using 
the RBF predictor in place of the linear predictor.  
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Table 8.  Mean square error (MSE) for CA, linear and RBF predictor without guard cell. 

TIME SERIES BEST CA  
MSE 

WITHOUT 
GUARD 
CELL 

LINEAR 
MSE FROM 
LEADING 
CELLS & 

NO GUARD 
CELLS 

LINEAR 
MSE FROM 
BRACKET 
CELLS & 

NO GUARD 
CELLS 

RBF MSE 
FROM 

LEADING 
CELLS & 

NO GUARD 
CELL 

RBF MSE 
FROM 

LEADING 
CELLS & 

NO GUARD 
CELL 

+DELAY  

RBF MSE 
FROM 

BRACKET 
CELLS & 

NO GUARD 
CELL 

472s17r512 0.0201 0.0195 0.0179 0.0197 0.0217 0.0176 

472s19r512 0.0191 0.0206 0.0175 0.0205 0.0243 0.0171

472s25r512 0.0112 0.0120 0.0118 0.0122 0.0128 0.0114

472s30r512 0.0067 0.0077 0.0064 0.0081 0.0099 0.0065

472s31r512 0.0095 0.0101 0.0102 0.0103 0.0100 0.0104

472s37r512 0.00143 0.0141 0.0133 0.0144 0.0157 0.0134

472s38r512 0.00119 0.0121 0.0111 0.0124 0.0137 0.0111

472s43r512 0.0112 0.0117 0.0103 0.0117 0.0139 0.0101

472s30rl 0.0141 0.0166 0.0124 0.0159 0.0210 0.0111 

472s31rl 0.0117 0.0139 0.0102 0.0134 0.018 0.0092 

418s39r512 0.0072 0.0078 0.0075 0.0074 0.0135 0.0067 

 
Column 3 of table 9 also shows the best mean square error that was achieved for the CA 
predictor with a guard cell as shown in figure 9. Unlike the results for no guard cell, in almost 
all cases the best results with a guard cell are obtained for a CA length of 100 cells (see figure 
9).  This is a strong indication that the measured returns are stochastic.  Once one has moved 
beyond the region in which the clutter is correlated (i.e. past the guard cells) the best estimate 
of the mean level is achieved by taking the longest possible ensemble average to minimize 
statistical error.  Tests using increasing embedding dimension for the linear and RBF 
predictors with bracketing input cells and guard cells (not shown) display a similar 
improvement. 
 
A final test of the chaotic embedding approach was performed.  When reconstructing a 
chaotic attractor, it is necessary to choose the embedded sample points with a delay spacing 
that ensures that the full information content of the system is extracted [15].  This delay value 
was calculated via the mutual program discussed earlier.  Using the delays listed in table 4, 
the RBF predictor was rerun with properly spaced embedded values (and leading input 
samples).  The results are presented in column 6 of table 8.  Sensitivity testing again showed 
that no advantage was obtained by increasing the embedding dimension beyond 10.  The 
results of using the delayed embedding are clearly worse then those obtained without delay, 
inconsistent with a chaotic interpretation. 
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Table 9.  Mean square error (MSE) for CA, linear and RBF predictor with guard cell. 

TIME SERIES CA  MSE WITH 
GUARD CELL & 
CA LENGTH OF 

12 

BEST CA  MSE 
WITH GUARD CELL 

LINEAR  MSE 
FROM BRACKET 

CELLS WITH 
GUARD CELLS 

RBF MSE FROM 
BRACKET CELLS 

WITH GUARD 
CELLS 

472s17r512 0.0227 0.0206 0.0211 0.0216 

472s19r512 0.0260 0.0237 0.0237 0.0241

472s25r512 0.0122 0.0112 0.0121 0.0127

472s30r512 0.0089 0.0082 0.0090 0.0101

472s31r512 0.0102 0.0094 0.0097 0.0099

472s37r512 0.0156 0.0143 0.0149 0.0157

472s38r512 0.0130 0.0124 0.0130 0.0132

472s43r512 0.0136 0.0128 0.0131 0.0132

472s30rl 0.0230 0.0204 0.0209 0.0210 

472s31rl 0.0196 0.0176 0.0178 0.0179 

418s39r512 0.0076 0.0076 0.0095 0.0074 

 
Several conclusions can be derived from the results presented in this section.  First, there is no 
evidence to support a chaotic, or even non-linear, model of the sea clutter as both linear and 
non-linear detectors produce virtually identical results.  Even worse, experiments on the 
effective training sample size show that a larger training sample is required for the non-linear 
detector with no improvement in performance.  The decreased performance of the RBF 
predictor when the calculated delay values are used also argues strongly against an underlying 
chaotic structure.  The improved performance of the linear and RBF predictors (for the 
bracketing input) in comparison with the CA predictor results from their ability to fine tune 
the linear coefficients which are fixed and equal for the CA predictor.  The superior 
performance of all predictors under no guard cell operation results from their ability to exploit 
the correlation of the data, an advantage that disappears once the guard cell configuration is 
introduced.  This indicates that the underlying clutter process is a partially correlated 
stochastic process. 
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5. Conclusions 
 
No evidence exists for a linear, or more specifically, a chaotic interpretation of sea 
clutter returns.  The invariant measures of correlation dimension per the DML method 
[8] and largest Lyapunov exponent [18] prove to be ambiguous in their identification 
of a chaotic process as they produce very similar results for both chaotic and 
stochastic processes.  In addition, it is shown from an examination of the correlation 
measure versus cut-off length as per the Grassberger and Procaccia [10] method, that 
measured sea clutter returns produce results incompatible with the chaotic process that 
were speculated to be responsible. 
  
The concept of an underlying chaotic texture masked by a stochastic speckle 
component was also examined by filtering but found to suffer the same ambiguities 
and contradictions as discussed above. 
 
Three linear and non-linear predictors were examined and no performance 
improvement was noted between linear and non-linear prediction.  The behaviour of 
the predictor outputs under various input configurations were examined and the 
results from measured clutter returns were found to be most compatible with a 
partially correlated stochastic process.   
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